Neuronal glutamate transporters regulate glial excitatory transmission.

نویسندگان

  • Ming-Chi Tsai
  • Kohichi Tanaka
  • Linda Overstreet-Wadiche
  • Jacques I Wadiche
چکیده

In the CNS, excitatory amino acid transporters (EAATs) localized to neurons and glia terminate the actions of synaptically released glutamate. Whereas glial transporters are primarily responsible for maintaining low ambient levels of extracellular glutamate, neuronal transporters have additional roles in shaping excitatory synaptic transmission. Here we test the hypothesis that the expression level of the Purkinje cell (PC)-specific transporter, EAAT4, near parallel fiber (PF) release sites controls the extrasynaptic glutamate concentration transient following synaptic stimulation. Expression of EAAT4 follows a parasagittal banding pattern that allows us to compare regions of high and low EAAT4-expressing PCs. Using EAAT4 promoter-driven eGFP reporter mice together with pharmacology and genetic deletion, we show that the level of neuronal transporter expression influences extrasynaptic transmission from PFs to adjacent Bergmann glia (BG). Surprisingly, a twofold difference in functional EAAT4 levels is sufficient to alter signaling to BG, although EAAT4 may only be responsible for removing a fraction of released glutamate. These results demonstrate that physiological regulation of neuronal transporter expression can alter extrasynaptic neuroglial signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parawixin1: a spider toxin opening new avenues for glutamate transporter pharmacology.

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from glutamatergic nerve terminals, glial and neuronal glutamate transporters remove glutamate from the synaptic cleft to terminate synaptic transmission and to prevent neuronal damage by excessive glutamate receptor activation. In this issue of Molecular Pharmacology, Fontana et al. (p. 12...

متن کامل

Neuronal Glutamate Transporters Control Activation of Postsynaptic Metabotropic Glutamate Receptors and Influence Cerebellar Long-Term Depression

Neuronal and glial isoforms of glutamate transporters show distinct distributions on membranes surrounding excitatory synapses, but specific roles for transporter subtypes remain unidentified. At parallel fiber (PF) synapses in cerebellum, neuronal glutamate transporters and metabotropic glutamate receptors (mGluRs) have overlapping postsynaptic distributions suggesting that postsynaptic transp...

متن کامل

New views of glutamate transporter structure and function: advances and challenges.

Neuronal and glial glutamate transporters limit the action of excitatory amino acids after their release during synaptic transmission. Recent structural and functional investigations have revealed much about the transport and conducting mechanisms of members of the sodium-coupled symporter family responsible for glutamate clearance in the nervous system. In this review we summarize emerging vie...

متن کامل

Glutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn.

Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn neurons is a key process related to sensory transmission, neural plasticity, and pathogenesis of pain. In this study, we investigated how activation of NMDA receptors in spinal substantia gelatinosa neurons is regulated by glutamate re-uptake through glutamate transporters located in the astrocytic and neuronal plasma...

متن کامل

Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus.

In the mammalian brain, the specificity of excitatory synaptic transmission depends on rapid diffusion of glutamate away from active synapses and the powerful uptake capacity of glutamate transporters in astrocytes. The extent to which neuronal glutamate transporters influence the lifetime of glutamate in the extracellular space remains unclear. Here we show that EAAC1, the predominant neuronal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2012